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Following are three theorems, each given with a proof that is constructed as a proof by
contradiction. In each case, decide whether the proof structure can be changed to omit the
contradiction. For those you feel can be proved with a direct argument avoiding contradic-
tion, construct such a proof.

Theorem 1. Let (X, d) be a metric space, and let £ C X. If = is a limit point of E, then in
any neighbourhood N of x there are infinitely many points from F.

Proof: Assume, for a contradiction, that there exists an r > 0 such that the neighbourhood
B, (x) contains only finitely many points from E. Thus B,(z) contains only finitely many
points ey, ..., e, in £ — {z}. The number s = min{r, d(e, x), ..., d(e,, x)} is strictly positive.
Note that e; ¢ By(z) for any j € {1,...,n} since d(z,e;) > s for each such j. Also,as s <,
we have B,(z) C B,(z); since ey, ..., e, are the only points in B,(z) N (£ — {z}), we have
shown that B,(z) N (£ — {z}) is empty. Hence, B;(z) is a neighbourhood of x that contains
no points of £ — {z}. But x is a limit point of E, so no such neighbourhood can exist. [

Theorem 2. There exists a subset F of R such that £ = R but é =g.

Proof: We suppose, for a contradiction, that no such set E exists. Consider the rational
number Q. For any z € R, and any r > 0, there is a rational number ¢ € (z,z + r) since Q is
dense in R. Thus, every neighbourhood B, (z) contains elements from Q, which shows that
z is a limit point of Q. Since this is true for every real number z, it follows that Q = R.

On the other hand, fix any ¢ € Q and any r > 0. There is an irrational number between ¢
and ¢ + r: if r is irrational, then ¢ + /2 is such a number; if r is rational and r = m/n with
m,n € N then ¢+ +/m? + 1/2n is such a number. Hence, the ball B,.(¢) is not contained in Q.
Since this is true for any > 0, there is no neighbourhood of ¢ contained in Q, which means
that ¢ is not interior to Q. Since this holds for every ¢ € Q, it follows that the interior of Q is

empty.
Thus, there exists a set (namely £ = Q) in R whose closure is R but whose interior is empty.
This contradicts the assumption that no such E exists. O

Theorem 3. Let A be any set, and let #?(A) denote the power set of A, the set of all subsets
of A: Z(A) = {E; E C A}. There exists no surjection from A onto Z(A).

Proof: Suppose, for a contradiction, that such a surjection f: A — Z?(A) exists. Consider
the subset B € &#?(A) definedby B = {a € A; a ¢ f(a)}. We will demonstrate that, in fact,
B is not in the image of f, contradicting the assumption that f is surjective.

Suppose, for a contradiction, that there exists some z € A for which f(z) = B. If x € B, then
by the definition of B, = ¢ f(x); but f(z) = B, and so this implies that x ¢ B, contradicting
the assumption that + € B. Hence, we conclude that + ¢ B, which means that z € f(z).
But f(x) = B, so z € B, contradicting the assumption that + ¢ B. So the assumption that
there is an « for which f(z) = B must be false. It follows that B is not in the image of f.
Therefore, the original assumption that a surjection A — Z?(A) exists must be false. O



