18.100C: Spring 2010

Recitation Worksheet: Proof by Contradiction

February 17, 2010

Following are three theorems, each given with a proof that is constructed as a proof by contradiction. In each case, decide whether the proof structure can be changed to omit the contradiction. For those you feel can be proved with a direct argument avoiding contradiction, construct such a proof.

Theorem 1. Let (X, d) be a metric space, and let $E \subseteq X$. If x is a limit point of E, then in any neighbourhood N of x there are infinitely many points from E.

Proof: Assume, for a contradiction, that there exists an r > 0 such that the neighbourhood $B_r(x)$ contains only finitely many points from E. Thus $B_r(x)$ contains only finitely many points e_1, \ldots, e_n in $E - \{x\}$. The number $s = \min\{r, d(e_1, x), \ldots, d(e_n, x)\}$ is strictly positive. Note that $e_j \notin B_s(x)$ for any $j \in \{1, \ldots, n\}$ since $d(x, e_j) \ge s$ for each such j. Also, as $s \le r$, we have $B_s(x) \subseteq B_r(x)$; since e_1, \ldots, e_n are the only points in $B_r(x) \cap (E - \{x\})$, we have shown that $B_s(x) \cap (E - \{x\})$ is empty. Hence, $B_s(x)$ is a neighbourhood of x that contains no points of $E - \{x\}$. But x is a limit point of E, so no such neighbourhood can exist. \Box

Theorem 2. There exists a subset *E* of \mathbb{R} such that $\overline{E} = \mathbb{R}$ but $\overset{\circ}{E} = \varnothing$.

Proof: We suppose, for a contradiction, that no such set E exists. Consider the rational number \mathbb{Q} . For any $x \in \mathbb{R}$, and any r > 0, there is a rational number $q \in (x, x + r)$ since \mathbb{Q} is dense in \mathbb{R} . Thus, every neighbourhood $B_r(x)$ contains elements from \mathbb{Q} , which shows that x is a limit point of \mathbb{Q} . Since this is true for every real number x, it follows that $\overline{\mathbb{Q}} = \mathbb{R}$.

On the other hand, fix any $q \in \mathbb{Q}$ and any r > 0. There is an irrational number between q and q + r: if r is irrational, then q + r/2 is such a number; if r is rational and r = m/n with $m, n \in \mathbb{N}$ then $q + \sqrt{m^2 + 1}/2n$ is such a number. Hence, the ball $B_r(q)$ is not contained in \mathbb{Q} . Since this is true for any r > 0, there is no neighbourhood of q contained in \mathbb{Q} , which means that q is not interior to \mathbb{Q} . Since this holds for every $q \in \mathbb{Q}$, it follows that the interior of \mathbb{Q} is empty.

Thus, there exists a set (namely $E = \mathbb{Q}$) in \mathbb{R} whose closure is \mathbb{R} but whose interior is empty. This contradicts the assumption that no such *E* exists.

Theorem 3. Let *A* be any set, and let $\mathscr{P}(A)$ denote the *power set* of *A*, the set of all subsets of *A*: $\mathscr{P}(A) = \{E : E \subseteq A\}$. There exists no surjection from *A* onto $\mathscr{P}(A)$.

Proof: Suppose, for a contradiction, that such a surjection $f: A \to \mathscr{P}(A)$ exists. Consider the subset $B \in \mathscr{P}(A)$ defined by $B = \{a \in A : a \notin f(a)\}$. We will demonstrate that, in fact, B is not in the image of f, contradicting the assumption that f is surjective.

Suppose, for a contradiction, that there exists some $x \in A$ for which f(x) = B. If $x \in B$, then by the definition of $B, x \notin f(x)$; but f(x) = B, and so this implies that $x \notin B$, contradicting the assumption that $x \in B$. Hence, we conclude that $x \notin B$, which means that $x \in f(x)$. But f(x) = B, so $x \in B$, contradicting the assumption that $x \notin B$. So the assumption that there is an x for which f(x) = B must be false. It follows that B is not in the image of f. Therefore, the original assumption that a surjection $A \to \mathscr{P}(A)$ exists must be false. \Box