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Following are three theorems, each given with a proof that is constructed as a proof by
contradiction. In each case, decide whether the proof structure can be changed to omit the
contradiction. For those you feel can be proved with a direct argument avoiding contradic-
tion, construct such a proof.

Theorem 1. Let (X, d) be a metric space, and let E ⊆ X . If x is a limit point of E, then in
any neighbourhood N of x there are infinitely many points from E.

Proof: Assume, for a contradiction, that there exists an r > 0 such that the neighbourhood
Br(x) contains only finitely many points from E. Thus Br(x) contains only finitely many
points e1, . . . , en in E−{x}. The number s = min{r, d(e1, x), . . . , d(en, x)} is strictly positive.
Note that ej /∈ Bs(x) for any j ∈ {1, . . . , n} since d(x, ej) ≥ s for each such j. Also, as s ≤ r,
we have Bs(x) ⊆ Br(x); since e1, . . . , en are the only points in Br(x) ∩ (E − {x}), we have
shown that Bs(x) ∩ (E − {x}) is empty. Hence, Bs(x) is a neighbourhood of x that contains
no points of E − {x}. But x is a limit point of E, so no such neighbourhood can exist. �

Theorem 2. There exists a subset E of R such that E = R but
◦

E = ∅.

Proof: We suppose, for a contradiction, that no such set E exists. Consider the rational
number Q. For any x ∈ R, and any r > 0, there is a rational number q ∈ (x, x + r) since Q is
dense in R. Thus, every neighbourhood Br(x) contains elements from Q, which shows that
x is a limit point of Q. Since this is true for every real number x, it follows that Q = R.
On the other hand, fix any q ∈ Q and any r > 0. There is an irrational number between q
and q + r: if r is irrational, then q + r/2 is such a number; if r is rational and r = m/n with
m, n ∈ N then q +

√
m2 + 1/2n is such a number. Hence, the ball Br(q) is not contained in Q.

Since this is true for any r > 0, there is no neighbourhood of q contained in Q, which means
that q is not interior to Q. Since this holds for every q ∈ Q, it follows that the interior of Q is
empty.
Thus, there exists a set (namely E = Q) in R whose closure is R but whose interior is empty.
This contradicts the assumption that no such E exists. �

Theorem 3. Let A be any set, and let P(A) denote the power set of A, the set of all subsets
of A: P(A) = {E ; E ⊆ A}. There exists no surjection from A onto P(A).

Proof: Suppose, for a contradiction, that such a surjection f : A → P(A) exists. Consider
the subset B ∈P(A) defined by B = {a ∈ A ; a /∈ f(a)}. We will demonstrate that, in fact,
B is not in the image of f , contradicting the assumption that f is surjective.
Suppose, for a contradiction, that there exists some x ∈ A for which f(x) = B. If x ∈ B, then
by the definition of B, x /∈ f(x); but f(x) = B, and so this implies that x /∈ B, contradicting
the assumption that x ∈ B. Hence, we conclude that x /∈ B, which means that x ∈ f(x).
But f(x) = B, so x ∈ B, contradicting the assumption that x /∈ B. So the assumption that
there is an x for which f(x) = B must be false. It follows that B is not in the image of f .
Therefore, the original assumption that a surjection A→P(A) exists must be false. �


