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of vector fields Xv(a) parameterized by a ∈ [0, 1] lifts to a universal vector
field Xv(s) in the product ([0, 1] × F ) and it descends to the quotient W .

Now on the conical end C we have:

ω = Θ + π∗dq = dΘF + v ∧ ds + drS ∧ ds

because β∗dΘF = dΘF

and

dH = d(π1 ◦HF ) + k�(rS)drS

Hence, the Hamiltonian vector field of H is:

XH = XHF
− k�(rS)

∂

∂s
+ k�(rS)Xv(s) −XHF

(v)
∂

∂rS
Finally the action of an orbit γ of H in C is given by:

AH(γ) =

�

γ

{(−XHF
− k�(rS)Xv(s))Θ + rSk

�(rS)} − π∗1HF − k(rS)

�

Theorem 3.0.11. Let (E, π) be a compact convex Lefschetz fibration in

standard form. Let Hp : �E → R be Lefschetz admissible for E with slope

p on the base and the fibre. Remember that �E has a convex symplectic

structure ( �E,ωE, θE , λE , φE).
Then there is a cofinal family of Hamiltonians Kp with respect to the above

convex symplectic structure such that:

(1) The periodic orbits of Kp of positive action are in 1-1 correspondence
with the periodic orbits of Hp. This correspondance preserves index.
Also the moduli spaces of Floer trajectories are the same between
respective orbits.

(2) Kp ≤ 0 on E ⊂ �E.
(3) Kp → 0 pointwise on E.

(4) Kp is C
2 small in E ⊂ �E.

Now this theorem means that:

(1) lim
−→

p

SH
[0,∞)
∗ (Kp) = lim

−→
p

SH∗(Hp)

SH
[0,∞)
∗ (Kp) := SH∗(Kp)/SH

(−∞,0)
∗ where SH

(−∞,0)
∗ is the symplectic

homology group generated by orbits of negative action. We also have:

(2) lim
−→

p

SH∗(Kp) = lim
−→

p

SH
[0,∞)
∗ (Kp)

This is because there exists a cofinal family of Hamiltonians Gp such that:

(1) Gp ≤ 0 on E ⊂ �E.
(2) Gp → 0 pointwise on E.

(3) Gp is C2 small in E ⊂ �E.
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(4) All the periodic orbits of Gp have positive action.

This means that there exist sequences pi and qi such that:

Kpi
≤ Gqi

≤ Hpi+1

for all i. Hence:

lim
−→

p

SH
[0,∞)
∗ (Gp) = lim

−→
p

SH
[0,∞)
∗ (Kp)

Property 4 implies:

lim
−→

p

SH
[0,∞)
∗ (Gp) = lim

−→
p

SH∗(Gp)

This gives us equation 2. Combining this with equation 1 gives:

lim
−→

p

SH∗(Kp) = lim
−→

p

SH∗(Hp)

This proves Theorem 1.6.2. Note: the Lefschetz fibration in Theorem
1.6.2 may not be in standard form, but we can deform it using Lemma 3.0.6
to a Lefschetz fibration in standard form. This induces an isomorphism
between respective symplectic homology groups associated to each Lefschetz
fibration.

Proof. of Theorem 3.0.11
We will slightly modify the proof of a related result in [14].
Also, we will use the notation set up already in 3.0.10.
We assume that the period spectra of ∂F and ∂S are discrete and injec-

tive.
The Hamiltonians HF and HS have slope λ /∈ S(S) ∪ S(F ). We also

assume that HF and HS have this slope outside a small neighbourhood of
F and S respectively. We will assume that HF and HS are C2 small on the
interior of F and S respectively.

What we want to do is to choose some convex symplectic structure

(E,ωE , θE, λE , φE)

on �E and a Hamiltonian H3 so that there exist constants c1, c2, � such that:

(1) H3 = H on E.

(2) Any curve in �E with each end converging to an orbit in E satisfying a
Floer type equation (e.g Floer trajectory or pair of pants) is entirely
contained in E.

(3) on {φE ∈ [c1, c2]} we have that H1 is constant.
(4) on φE > c2 + � we have that H1 is linear with respect to the conical

end of this convex symplectic structure.
(5) Any additional orbits (i.e orbits outside E) have negative action.

We will acheive this in 4 sections (a)− (d).
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Note H3 will be constructed in 3 stages in sections (a),(b),(c) respectively
(i.e we first construct H1 from H in (a) and then H2 from H1 in (b) and
then H3 from H2 in (c)).

In section (a) we will construct a Hamiltonian HF,1 so that:

(1) on F , HF,1 is equal to HF .
(2) on rF ≥ A, HF,1 is constant for some A to be defined later.
(3) HF,1 is a function of rF on the conical end of F .

We also construct a similar Hamiltonian HS,1 which is associated with HS.
Finally in this section, we show that the orbits of

H1 := π∗(HS,1) + π∗1(HF,1)

outside E have negative action. We already know that the orbits inside E
are the same as the orbits of H because H = H1 inside E.

In section (b) we will construct a Hamiltonian H2 such that:

(1) H2 = H1 on rS ≤ A, rF ≤ A.
(2) H2 is constant outside rS ≤ B, rF ≤ B for some constant B > A.
(3) Any orbit of H2 outside rS ≤ A, rF ≤ A has negative action. This

ensures that all the orbits of H2 of positive action are the same as
the orbits of H.

In section (c) we will finally construct H3. We choose some admissible
Hamiltonian K with respect to the convex symplectic structure

(E,ωE , θE, λE , φE)

which is equal to 0 on rS ≤ C, rF ≤ C for some chosen C > B. Then we let
H3 := H2 +K. We also ensure that K has slope proportional to

√
λ which

ensures that the additional orbits created on top of the orbits of H2 have
negative action.

In section (d) we will show that no Floer trajectory of H3 connecting
orbits inside E can intersect rF = C or rS = C. If we combine this fact
with the maximum principle in Lemma 3.0.5 and also a maximum principle
from [13, Lemma 1.5] we find that any Floer trajectory connecting orbits
inside E must be contained in E. This ensures that the Floer trajectories
connecting orbits inside E are identical to the Floer trajectories of H and
hence we get that:

SH
[0,∞)
∗ (H3) = SH∗(H)

And this gives us our result.

Define:

µλ := dist(λ, S(S) ∪ S(F ))

(a) We first modify a construction due to Herman in [10] which takes some
normal cofinal Hamiltonian on a finite type convex symplectic manifold and
makes it constant near infinity so that the only added periodic orbits have
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negative action. We need to modify this argument because we need greater
control over the Hamiltonian flow Xπ∗HS

.
From now on we will assume that HS = 0 on S and is equal to k(rS) for

rS ≥ 1. Similarly we assume that HF = 0 on F and is a function of rF on
rF ≥ 1.

The first thing we need to do is to modify HS and HF to HS,1 : S → R

and HF,1 : F → R so that they are constant at infinity and such that the
additional orbits added to H1 := HF,1 + π∗HS,1 have negative action.

We will use all the notation as in the proof of 3.0.10.
Define:

Rs := sup|Xv(s)(ΘF )|

R := sup{Rs : s ∈ [0, 1]}

Define:

A = A(λ) := (6 +R)λ/µλ > 1

We can assume that A > 1 because we can choose µλ to be arbitrarily small.
We define HF,1 to be equal to HF on rF < A−

�
λ

. Hence on the interior of

F , HF,1 has C2 norm ≤ �. Set HF,1 = hF (rF ) for rF ≥ 1 with non negative
derivative. h�F (rF ) is equal to λ on [1 + �

λ
, A− �

λ
] For rF ≥ A set hF (rF ) to

be constant and equal to C where C is arbitrarily close to λ(A − 1). HF,1

takes values in [−�, �] for rF ∈ [1, 1 + �
λ

] and in [λ(A− 1)− 2�, λ(A− 1)] for
rF ≥ A−

�
λ

. Here is a picture:

Figure 3.0.12.
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For notational convenience we will write HF,1 instead of π∗1HF,1.
Assume that HS,1 is a Hamiltonian such that on the conical end C we

have that HS,1 is equal to k(rS). We want HS,1 to behave in a similar way
to HF,1. (i.e we have that the graph of k(rS) is the same as the graph in
figure 3.0.12).

We want to show that the additional orbits of H1 := HF,1 + π∗HS,1 only
have negative action. These additional orbits lie in the region rS ∈ (A− �

λ
, A)

and rF ∈ (A− �
λ
, A).
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We will first consider the orbits in rS ∈ (A − �
λ
, A). Now, orbits of HF,1

have action at most λ because h�F ≤ λ, i.e.
�
orbit−XHF,1

ΘF ≤ λ.
Let p be a point on some orbit o. Remember that the smallest distance

between λ and the period spectrum of ∂F is ≥ µλ. Hence near p we have
|k�(rS)| < λ− µλ. Hence |k�(rS)Xv(s)Θ| ≤ R(λ− µλ) and rSk

�(rS) ≤ A(λ−
µλ).

Also, because |HF,1v|C2 is smaller than �, we have that the orbit cannot
move more than � away from rS = A. Hence the action of an orbit near
rS = A is less than or equal to:

λ+ (R+A)(λ− µλ)−C + 2�

≤ (R+ 1 + 1 +A−A− (6 +R))λ+ 2� ≤ −3λ→ −∞

Now the case for orbits near rF = A is exactly the same as in Oancea’s
paper [14]. Near rF = A we have that v = 0, hence the action is at most:

λ+A(λ− µλ)−C + �

≤ (1 +A−A+ 1− (6 +R))λ+ � ≤ −3λ→ −∞

Hence all the additional orbits of H1 have actions tending to −∞.

(b) Now we modify H1 so that it is constant and equal to 2C outside

the compact set {rS ≤ B, rF ≤ B} with B = A
√
λ. This is true already on

{rS ≥ A}∩{rF ≥ A}, so we only need to consider the case {rS ≥ A}∩{rF ≤
A} and {rF ≥ A} ∩ {rS ≤ A} . Now the case {rF ≥ A} ∩ {rS ≤ A} is
exactly the same as the case Oancea dealt with in [14, section (c)]. (Note:
in Oancea’s paper, A = 5λ/µλ instead of (6 + R)λ/µλ but this makes no
difference.) In Oancea’s paper he deals with this case by modifying π∗1HF,1

to some new Hamiltonian HF,2.
We will mimick Oancea’s paper for the case {rS ≥ A, rF ≤ A}. This will

involve modifying the Hamiltonian π∗HS to some new Hamiltonian HS,2.
Let:

HS,2 : W × [A,∞) −→ R

HS,2(x, s, rS) = (1− ρ(rS))HF,1(x) + ρ(rS)C

where x is a point in F and s parametrizes [0, 1]. Also, ρ : [A,∞) → [0, 1]
with ρ = 0 on [A, 2A], ρ = 1 for rS ≥ B − �, ρ strictly increasing on

[2A,B − �], and ρ� = const ∈
�

1
B−2A−�

, 1
B−2A−3�

�
on [2A + �,B − 2�]. The

graph of ρ is:
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We also have:

dHS,2 = (1 − ρ(rS))dHF,1 + (C −HF,1)ρ
�(rS)drS

XHS,2
= (1− ρ(rS))(XHF,1

−XHF,1
(v)

∂

∂rS
) + (C −HF,1)ρ

�(rS)(Xv(s) −
∂

∂s
)

Let H2 := HS,2 +HF,2.
We have assumed earlier that XHF

(v) = 0, and hence XHF,1
(v) = 0.

This means that projecting orbits down to the base S produces orbits of
the Hamiltonian HS. In particular we can assume that the orbits of H2 on
rS ≥ 1 stay in each level set rS = const.

For some orbit o of H2, let:

A1 := −

�

o

�
(1− ρ(rS))(XHF,1

) + (C −HF,1)ρ
�(rS)(Xv(s))

�
(Θ)

A2 :=

�

o

�
(C −HF,1)ρ

�(rS)rS
�

The action of this orbit o is equal to:

A1 +A2 − (C −HF,1)ρ(rS)− C

(Remember HF,2 = C on {rS ≥ A, rF ≤ A})
We first consider orbits where v �= 0 on some part of the orbit. Now these

orbits are located in the interior of each fiber F . Hence, we can assume that
HF is negative and is C2 bounded by �. Also we may assume that XHF,1

(Θ)
is bounded above by �. Now, because XHF,1

(v) = 0, the rS coordinate of the
orbit is constant, hence we only need to consider 3 cases (i,ii,iii) for these
orbits:

(i) rS ∈ [A, 2A] ∪ [B − �
λ
,∞)

Now, ρ� = 0 and XHF,1
Θ is bounded above by �. Hence the action is

bounded above by �− C.
(ii) rS ∈ [2A, A+B

2 ]
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ρ� ≤ 1
B−2A−3� . S is bounded above by A+B

2 + 1. Also, |Xv(s)(Θ)| is
bounded above by the constant R. Now, for large enough λ we also have
that A+B

2
1

B−2A−3� is bounded above by 3
4 because this expression tends to

1
2 as λ → ∞. Also, we can ensure that � + C. 1

B−2A−3� .R ≤ 1
8C for large

enough λ. Hence our action is bounded above by:

�+ C.
1

B − 2A− 3�
.R + (C − �).

A+B

2

1

B − 2A− 3�
−C

≤ −
1

8
C

for large enough λ.
(iii) rS ∈ [A+B

2 , B − �
λ

]

In this case we have ρ ∈ [12 , 1]. Hence for λ big enough we have that the
action is bounded above by:

�+ C.
1

B − 2A− 3�
.R+ (C − �).

1

B − 2A− 3�
.(B −

�

λ
)− (C − �).

1

2
− C

≤ −
1

8
C

Hence all orbits which pass through v �= 0 have negative action in W ×
[A,∞). Now, when v = 0 the action of the orbits are the same as in Oancea’s
paper [14] (although A = 5λ/µλ instead of (6 + R)λ/µλ, but this doesn’t
matter). Hence, these orbits also have action tending to −∞ as well.

Hence we have a Hamiltonian which is equal to H on E and is constant
and equal to 2C further out, and such that the only additional orbits have
negative action.

(c)Finally we need to make this Hamiltonian cofinal by choosing some
contact boundary and forcing H to be linear at this contact boundary, and
such that the only additional orbits have negative action as well.

Let Z be the Liouville vector field which is ω-dual to θ := Θ +π∗q. Then
this vector field is expressed as:

Z := Z � + (rS − Z
�(v))(

∂

∂rS
)

where Z � is the Liouville vector field in F associated to Θ|π−1(y). We assume

that λ is big so that A
√
λ = B > |Z �(v)|. Consider the sets:

I = ∂S × [1,∞) × ∂F × [1,∞)

II = S × ∂F × [1,∞)

III = W × [1,∞)

(see Oancea’s paper: [14, figure 3]).

We define a hypersurface Σ ⊂ Ê such that:

rS |Σ∪III = α > 1

rS |Σ∪I ∈ [1, α]
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rF |Σ∪II = β > 1

rF |Σ∪I ∈ [1, β]

We can ensure that Z is transverse to this hypersurface, and hence the
flow of Z gives us a map:

Ψ : Σ× [1,∞) → Ê

which gives us a conical end for Ê. Let r be the coordinate for the [1,∞)
part of Σ× [1,∞). Then Ψ−1({rS ≥ B} ∪ {rF ≥ B}) ⊃ {S ≥ B}
H2 is constant and equal to 2C on {rS ≥ B} ∪ {rF ≥ B}
Let K be a Hamiltonian which is equal to 0 on the region r < B + �

bounded by Σ and is equal to l(r) outside r ≥ B + � where l�(r) ≥ 0 and
for r ≥ B + � we have l�(r) = µ /∈ S(Σ), where µ will be arbitrarily close to

L
√
λ where L is some constant chosen later. The point is that K = 0 on

the region
{rS ≤ B} ∩ {rF ≤ B}

This means that the orbits lie in the region where H3 is constant and equal
to 2C.

Define:
H3 := H2 +K

Now the actions of the orbits of K are bounded above by BV L
√
λ for

some constant V . Choose L < 1
V

. Hence the orbits of H3 inside r ≥ B + �
have action bounded above by:

(B + �)
√
λ− 2C = (

√
λA+ �)

√
λ− λ(A− 1)

For large enough λ we have that this quantity is negative. Hence the actions
of the additional orbits are negative.

(d) Finally using [14, Lemma 1], we have that any curve u passing through
{rS ∈ [A, 2A]} must have area greater than cA for some constant c (i.e
π ◦ u has area less than the area of u, so we can use [14, Lemma 1]). Now
the actions of orbits inside E are bounded above by Pλ where P is some
constant. This means that for large enough λ (i.e so that Pλ < cA) we have
ensured that no Floer trajectory between orbits of positive action can pass
through {rS ∈ [A, 2A]}. We have a similar statement for rF .

Hence by the maximum principle (cf. Lemma 3.0.5 and [13, Lemma 1.5])
we have that any Floer trajectory connecting orbits of positive action stay
within {rS ≤ 1, rF ≤ 1} (this uses the fact that on {rF ≤ 2A} ∩ {rS ≤ 2A}
we have that our Hamiltonian H3 is equal to H1 = π∗HS,1 + π∗1HF,1).

Note: Lemma 1 requires that the Hamiltonian be equal to 0 on {rS ∈
[A, 2A]} which means that it cannot have non-degenerate orbits. This prob-
lem can be solved as follows: Let Hk be a sequence of Hamiltonians with
non-degenerate orbits and let Jk be a seqence of complex structures such
that (Hk, Jk) C2 converges to (H,J) as k →∞. If there is a Floer trajectory
passing through {rS ∈ [A, 2A]} for some sequence of (Hk, Jk)’s converging to
(H,J) then by Gromov compactness (see [1]) we have that there is a Floer
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trajectory of H passing through {rS ∈ [A, 2A]}. But this is impossible,
hence for some large enough k we have no Floer trajectory passing through
{rS ∈ [A, 2A]}.

Note, we can use an identical argument with the pair of pants surface
satisfying Floer type equations.

�

3.1. A better cofinal family for the Lefschetz fibration. In this sec-
tion we will prove Theorem 1.6.4.

We consider a compact convex Lefschetz fibration (E, π) fibred over the
disc (i.e. S = D). Basically the cofinal family is such that HF = 0. This
means that the boundary of F does not contribute to the symplectic ho-
mology of the Lefschetz fibration. The key idea is that near the boundary
of F the Lefschetz fibration looks like a product D × nhd(∂F ) and because
the symplectic homology of the disc is 0 we should get that the boundary
contributes nothing.

Statement of Theorem 1.6.4:
If S = D, the unit disc, then

SH∗(E) ∼= SHlef
∗

(E)

From now on we will use the same notation as established in the proof of
lemma 3.0.10.

Before we prove Theorem 1.6.4, we will write a short lemma on the Z

grading of SH∗(E).

Lemma 3.1.1. Let E be a convex Lefschetz fibration with base S and a
smooth fibre F = π−1(a) (a ∈ S). Suppose we have trivialisations of K bE

and KbS
(these are the canonical bundles for �E and �S respectively); these

naturally induce a trivialisation of K bF
away from F . If we smoothly move

a, then this smoothly changes the trivialisation.

Proof. of Lemma 3.1.1. We choose a J ∈ Jh(E). The bundle E away from

Ecrit has a connection induced by the symplectic structure. Let A be defined
as in 1.6.1. Let U be a subset of A where

(1) π is J holomorphic.
(2) A \ U is relatively compact in E.
(3) U is of the form r ≥ K where r is the coordinate for [1,∞) in A (see

definition 1.6.1).

This means that in U , we have that the horizontal plane bundle H is J
holomorphic. Choose a global holomorphic section of KbS

and lift this to
a section s of H. Choose a global holomorphic section t of K bE

. Now the

tangent bundle of �F is isomorphic to the ω orthogonal bundle T of H. This
is also a holomorphic bundle. There exists a unique holomorphic section w
of X such that s∧w = t. Hence, w is our nontrivial holomorphic section of

T in U ∪ �F .


