Scrambled Proof #2

Consider the following theorem and the “pieces” of the proof you’ve been given. Please put the pieces in logical order to form an understandable proof.

Theorem: Let \mathcal{H} be a complex Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and let T be a bounded linear operator on \mathcal{H}. Then there exists a bounded linear operator T^* on \mathcal{H} such that, for all x and y in \mathcal{H}, $\langle Tx, y \rangle = \langle x, T^*y \rangle$.

Proof:
1. Finally, to show that T^* is linear, a computation shows that for any complex numbers α and β and y_1 and y_2 in \mathcal{H}, the vector $\alpha T^*(y_1) + \beta T^*(y_2)$ satisfies $\langle Tx, \alpha y_1 + \beta y_2 \rangle = \langle x, \alpha T^*(y_1) + \beta T^*(y_2) \rangle$ for all x, and using uniqueness, therefore, $T^*(\alpha y_1 + \beta y_2) = \alpha T^*(y_1) + \beta T^*(y_2)$ as required.

2. Therefore, f_y is a bounded linear functional on \mathcal{H} and since \mathcal{H} is self-dual, there exists a unique vector y^* in \mathcal{H} such that $f_y(x) = \langle x, y^* \rangle$ for all x.

3. Thus, the candidate for T^* is satisfactory, and the proof is complete.

4. Observe that this function f_y is linear in x by standard properties of the inner product and that it maps \mathcal{H} to the complex numbers.

5. Next, observe that by construction, T^* satisfies $\langle Tx, y \rangle = \langle x, T^* y \rangle$ for all x and y in \mathcal{H}.

6. We will construct the required T^* vector by vector.

7. First, clearly T^* so constructed maps \mathcal{H} to \mathcal{H}.

8. Let y be a fixed vector in \mathcal{H} and consider the function f_y defined on \mathcal{H} by $f_y(x) = \langle Tx, y \rangle$ for all values of x.

9. Further, f_y is bounded, since for any x, $|f_y(x)| = |\langle Tx, y \rangle| \leq \|T\||\|x\||\|y\|$.

10. Further, to show T^* is bounded, note that $\|T^*y\| = \sup \{|\langle x, T^*y \rangle| : x \in \mathcal{H}, \|x\| \leq 1\} = \sup \{|\langle Tx, y \rangle| : x \in \mathcal{H}, \|x\| \leq 1\} \leq \sup \{||T||\|x\||\|y\| : x \in \mathcal{H}, \|x\| \leq 1\} = ||T||\|y\|$.

11. Let \mathcal{H} and T be as in the hypothesis.

12. Our candidate for T^* is to set, for each y in \mathcal{H}, $T^*(y) = y^*$, where y^* is as constructed above for y.
Key: 11, 6, 8, 4, 9, 2, 12, 5, 7, 10, 1, 3