APPENDIX

The Use of Symbols: A Case Study

In this appendix, I take a symbol-laden article and show how it can be dras-
tically simplified. Each expression to be replaced is enclosed in large parenthe-
ses and, for comparison, each suggested replacement follows immediately and is
enclosed in square brackets. As a result, one can appreciate the simplification
even without keeping track of the mathematical details. If you look at nothing
else, at least take a moment to compare equations (11) and (12) with their coun-
terparts (117 and (12").

The mathematics itself, while sophisticated, is elementary. There is no al-
gebra, no geometry, no convergence; essentially, there is only bookkeeping.

Recall the three important steps to take toward simplifying your notation:

I. Use an uncomplicated symbol in place of an elaborate one.
II. Discard any symbol that is just plain unnecessary.
II. Simplify the mathematical argument itself.
The article I picked is Sierpinski [24], as corrected by K. Kunugui. It is the
source of the monster symbol displayed in Section 5.6, and contains examples
of all three types of problems.

In order to eliminate distractions, I have streamlined a great deal of the nota-
tion. In particular, I have recast the entire article in terms of R, the real num-
bers, so that the setting will be familiar to everyone and the argument elemen-
tary. (There are some comments about this at the end of the discussion.) The
theorem now reads as follows:

THEOREM. Assume there exists a family (Ag) oe R Of countably infinite
subsets of R such that, for o# f, either ae A g or B e A, Then there exists
a sequence of functions fi: R — R such that every uncountable set is mapped
onto R by all but finitely many f.

REMARK. Note that the assumed family is indexed by R itself.

37



APPENDIX

Proof. The only special fact needed in the proof is that R can be put into
one-one correspondence with the set of all pairs of sequences ny, ny, ..., ¢,

ty, ..., in which (ny) is an increasing sequence in N (the natural numbers)
and () is a sequence in R. Consider any o€ R. To indicate that « corre-
sponds to the pair (ng), (), Sierpinski writes

n and L= 4 1)

and he enumerates the countably infinite set A, as

( A =18 ... 1 ) @

[ A = {al, ay, - - } ] (2"

(The alternative (27) is rid of the extra letter £ .} (Type 1.) Then he defines
fi{c) by the monster symbol. Sierpinski had a pixyish quality and may have

done all this partly because it was so much fun. But as it turns out, Sierpin-
ski’s argument is not complicated enough, and at the end of his paper, at the de-
cisive step, he confuses a sequence with a subsequence.

Kunugui corrects the proof as follows. First, inductively, he picks an in-
teger

& &
( e {n .0y . ...} G=12...) ) ©)

% o
[ Iiae{nl,nz,...} (I'=1,2,...) ] (3’)

so that
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for all j < i. This is possible because the sequence in braces is increasing.
(Note that (3") results from (3) by means of (2').) Then he points out that

( ’f="f’ ) )

Ji

where

( Qla) is a sequence of positive integers. )

The blank spaces signify that the author’s expressions should be replaced by
nothing at all—in other words, that what the author is writing is unnecessary.
For, as it turns out, he is going to fix ¢, then determine i, and then, for the one
and only time, pick

In these circumstances, we can just call it j. (Type IL.)

Next, Kunugui defines a new sequence of real numbers,
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as follows:

and, fori > 1,

(e ..o n% - go. ) ®)

15 +1

The reason none of this is necessary is that the only numbers
a
e
that he uses in the proof are for those & of the form

k=1

)

—but in that case we have, simply,
71,? = éia [= ai]s )]

without further ado. (Type IIL)

Finally, the author defines
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( file) = k =1,2,...). ) (7

)
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heeed

[ flo =4 i’

In (7°), the remaining values of f(¢) are arbitrary—for definiteness, say

floy = (k= 1%,

This change from (7) to (7), the most significant of all, proceeds in two steps.
The first step is simply the substitution (6), which reduces (7) to

«.
1

il = ¢
k o
"

From here, a certain amount of experimenting leads to (7"). That’s the interest-
ing thing about this kind of editing: once you have simplified the mathematics
and the notation so that the argument is easier to follow, you may see a way of
simplifying the reasoning still further.

Let us now follow through the argument that the functions f;, thus de-
fined, satisfy the requirements of the theorem. Contrapositively, we consider
any set § that infinitely many f}, fail to map onto R, and show that it must be
countable. (The original article argues by “questionable” contradiction; see Sec-

tion 3.8.) By assumption, then, there exist an increasing sequence of indices
ny, ny, ... and a sequence #y, fp, ... in R such that

Lo € 5O (=12 ®)
7 J

(The values of ¢; fori # nj do not enter into the argument). By (1), there ex-
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ists B € R such that

- g S )

( nk = nk , tk = t"k (9)
[ n, = nf, b = tkﬁ ] 9

fork=1,2,... . (The little twist in the second half of (9) requires some pon-

dering. The more natural (9") is what leads to the simplification (7°).)
Now consider any o EEAﬁ ,with a# B. (This is where we fix o) By hy-

pothesis, B € A,. Hence (by (2)) [by (2')], there is an index ¢ for which

( p-zo. )
[ s-0. ]

(This is where we determine i.) Consider

In view of (5),

( B=ng. ) (10)
|

(Using (4) and (9), we get) [Using (3" and (9"), we get, for suitable j,]
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( k=I.a=nI-§a=n'B=nl_. )

1 j‘ﬂ jio: J!a
.
[ kzla=n.‘=n!6=n ]
i J J J

(This is the one time we pick j.)

Next, from ((9), (10), and (7)) [(9") and (7], we have

na
BBt
( 4 = t"k_tnﬂ_tnf’ = fi(@). )

k

T

&
[ f = rkﬁ = = (o). ]
Substituting from ((11)into (12)) [(11) into 127 ] gives us

( tn ) = f;la(a). )

ji Ji

[ e = f,,j(a). ]

43

(11

(11

(12)

(12)

(13)

(13)




APPENDIX

In view of (8), then, o ¢ §.

We have shown that for o # 8, if a¢Agthen ¢S ; that is, if @ €S
then o € Ag. Since Agis countable, S is countable. ¢

Comment on the theorem. The original article uses the language of
transfinite ordinals; the hypothesis of the theorem is the continuum hypothesis
(CH), which states that the uncountable sets in R, and the set of all countable
ordinals, all have the same cardinal as R itself. The hypothesis as stated in this
Appendix is an adaptation of (CH) to the particular problem. If we assume (CH),
then the ordered set § consisting of the negative integers followed by the count-
able ordinals can be indexed by R, and the sets Aa ={xeS:x< o} are as stat-
ed. The converse can also be proved directly, but note that it is immediate from
the conclusion of the theorem: every uncountable set in R is carried by some fk
onto R, hence must have the cardinal of R.
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